[ Pobierz całość w formacie PDF ]

ment. Whitehead applied it to the theory of poles and polars with respect to quadrics
determined by the corresponding inner product (see [20,§§108 124]).
Following Grassmann, Whitehead eventually uses the notation  AB for both  regressive
and  progressive products, depending on context to remove the ambiguity. The  regressive
product  AB of two blades A, B of step r, s with r + s > n is defined in terms of the
 progressive product of |A with |B by
 |AB =(|A|B) . (A3)
If r + s
expressed by
 |(AB) =|A|B . (A4)
For r + s = n both interpretations are allowed.
In our notation (A3) and (A4) correspond to the following relations
(A (" B) I =(A I) '"(B I) if r + s >n ,
(A'"B) I =(A I) ("(B I) if r + s
(A '" B) I =(A("B) I =[AB] if r + s = n.
Whitehead expands  regressive products using his  extended rule of the middle factor
[20, §103] which is equivalent to using (2.16) to expand (2.17) with B = I.
Multiple products in Grassmann s notation must be read from left to right. The rules
given above uniquely determine whether a given product between two blades is  progressive
or  regressive. Grassmann avoids parentheses by introducing periods as markers. As
examples showing how, take a, b, c, d, x as points and A, B, C, D, X as lines in a plane,
and consider the translations
x = ABa · bc =((A("B) '"a) ("(b '"c),
X= ABaCbDc = (((((A (" B) '" a) (" C) '" b) (" D) '" c,
 (xaAB)(xcAb · ad · xc)
= {((x '" a) (" A) '" B}{((((x '" c) (" A) '" b) (" (a '" d)) '" (x '" c)}
= [((x '" a) (" A)B] ((x '" c) (" A) '" b a '" d x '" c .
References
1.
Barnabei, M., Brini, A., and Rota, G.-C.: On the exterior calculus of invariant theory,
J. Algebra 96 (1985), 120 160.
36
2.
Doubilet, P., Rota, G.-C., and Stein, J.: On the foundations of combinatorial theory:
IX. Combinatorial methods of invariant theory, Stud. Appl. Math. 53 (1974), 185 216.
3.
Engel, F.: Grassmanns Leben, in Hermann Grassmann s Gesammelte Mathematische
und Physikalische Werke III.2, Teubner, Leipzig, 1911 (Reprint: Johnson, New York,
1972).
4.
Fano, U. and Racah, G.: Irreducible Tensorial Sets, Academic Press, New York, 1959.
5.
Forder, H. G.: The Calculus of Extension, Cambridge Univ. Press, Cambridge, 1941
(Reprint: Chelsea, New York, 1960).
6.
Grassmann, H.: Der Ort der Hamilton schen Quaternionen in der Ausdehnungslehre,
Math. Ann. 12 (1877), 375 386 (=Ges. Math. u. Phys. Werke II.1, pp. 268 282).
7.
Hestenes, D.: Spacetime Algebra, Gordon and Breach, New York, 1966, 1987.
8.
Hestenes, D.: A unified language for mathematics and physics, in J. S. R. Chisholm
and A. K. Common (eds.), Clifford Algebras and their Applications in Mathematical
Physics, D. Reidel, Dordrecht,1986, pp. 1 23.
9.
Hestenes, D.: New Foundations for Classical Mechanics, D. Reidel, Dordrecht, 1986.
10.
Hestenes, D.: Universal geometric algebra, Simon Stevin 63 (1988), 253 274.
11.
Hestenes, D.: The design of linear algebra and geometry, Acta Appl. Math. 23 (1991),
65 93.
12.
Hestenes, D. and Sobczyk, G.: Clifford Algebra to Geometric Calculus, D. Reidel,
Dordrecht, 1984.
13.
Judd, B. R.: Angular-momentum theory and projective geometry, Found. Phys. 13
(1983), 51 59.
14.
Mehmke, R.: Vorlesungen uber Punkt- und Vektorenrechnung, Vol. 1, Teubner, Leipzig,
Berlin, 1913.
15.
Robinson, G. de B.: Group representations and geometry, J. Math. Phys. 11 (1970),
3428 3432.
16.
Rota, G.-C. and Stein, J.: Applications of Cayley algebras, Atti Convegni Lincei 17
(1976), 71 97.
17.
Semple, J. G. and Kneebone, G. T.: Algebraic Projective Geometry, Oxford Univ.
Press, Oxford, 1952.
18. Turnbull, H. W.: On the vector algebra of eight associated points of three quadric
surfaces, Cambridge Phil. Soc. Proc. 22 (1925), 481 487.
19.
Turnbull, H. W.: A synthetic application of the symbolic invariant theory to geometry,
J. Indian Math. Soc. 17 (1927), 1 20.
20.
Whitehead, A. N.: A Treatise on Universal Algebra with Applications, Cambridge
University Press, Cambridge, 1898 (Reprint: Hafner, New York, 1960).
37 [ Pobierz całość w formacie PDF ]

  • zanotowane.pl
  • doc.pisz.pl
  • pdf.pisz.pl
  • marucha.opx.pl